I know radar. Those rotating dishes at Schiphol used for tracking airplanes, or at Rotterdam Harbour ensuring safe passage to hundreds of ships a day. I think my next car may even have some radar installed to help me drive safely. But wait, there is more – medical more. ‘Radar is an ideal technology for distinguishing objects and their movements, without touching them,’ says Francesco Fioranelli. ‘It can also be put to very good medical use, such as tracking your health in your home environment, raising the alarm before you are so unwell that you need highly specialised and expensive care.’ Now that’s an unexpected use. Read more about how radar can track both a fighter jet and your grandma’s health.
Lost in coding
The continual increase in computing power should feel as bliss rather than a burden. But ever since the 1960s, we have been struggling to write computer programs that can put this immense power to optimal use. We have succeeded in developing ever smarter programming methods, only to use these tools to build even more complicated systems. Kind of like a monkey chasing its own tail.
Diomidis Spinellis has made it his life’s work to help tame software complexity. The latest trend is to use so-called pre-built components, that can be imported into a software project with minimal effort, adding vital functionality. It has given rise to dynamics closely mimicking those of a natural ecosystem. But how to keep such a software ecosystem healthy? Read more here about Spinellis’ efforts to help tame the software jungle with evolutionary insights.
Processor en geheugen ineen – net als in ons brein
Het zou wat zijn, als we als mens wel met onze hersenen zouden nadenken, maar dat we voor het verwerken van binnenkomende informatie eerst de relevante herinneringen over een lange zenuwverbinding zouden moeten opdiepen uit, bijvoorbeeld, een geheugenorgaan ergens bij onze heupen. We zouden ons hoofd breken over waarom de evolutie in godsnaam tot zo’n oplossing gekomen is.
Dus waarom doen we het in computers wel nog steeds zo, vraagt professor Said Hamdioui van de TU Delft zich af. ‘Het is alsof je eerste klas naar New York vliegt, alleen maar om daar voor een euro aan snoep te kopen,’ zegt hij. Dat moet anders kunnen, en met de komst van de memristor is zo’n innovatief ontwerp – met geheugen en processor ineen – nu ook eindelijk mogelijk. Lees hier meer over zijn ultrazuinige computation-in-memory architectuur, waarvoor hij recent de ECS Innovation Award van de Europese Unie kreeg uitgereikt.
Improving proton therapy at the coffee machine
If you put ten scientists of various backgrounds into a room and tell them to ‘come up with something smart’, you won’t achieve much. But if you build a dedicated care facility where they can mingle and provide a coffee machine to top it off, you may spark flashes of brilliance. That’s how HollandPTC inspired a TU Delft physicist and an LUMC radiation-oncologist to come up with the idea of measuring protons inside a cancer patient – during the delivery of the proton radiotherapy treatment.
Proton radiotherapy already has a mind boggling accuracy of only a few millimeters. Using highly advanced ‘intelligent’ PET detectors, the researchers aim to improve this accuracy even further. It will be the protons themselves who, by creating just a tiny bit of radiation inside the patient, tell the story of where they stop and deliver most of their cell-killing radiation dose. It will take a few years to get there, but eventually this advanced radiation treatment will spare the healthy organs surrounding the tumour even better, reducing unwanted side-effects even further. Read more about the visualisation of protons during the radiotherapy treatment here.
Shining a light on cloud maintenance
The cloud – just another one of those things you often hear about but don’t really care about. That is, until it stops working for a few hours and you’re stuck in the supermarket with a cart full of groceries, unable to pay by ATM-card and not carrying any cash. That is what happened to me at Albert Heijn a few weeks ago.
More and more services that are essential to our society operating smoothly are stored in the cloud. It is growing and growing and already responsible for about 2% of our world-wide energy demand. If it doesn’t break down under its own weight, it may eventually become a climate hazard. That is, until Georgios Andreadis came along.
For his master’s thesis, he researched how to bring capacity planning for cloud data centres into the 21st century. As a result, these centres may be able to continue to meet the ever-growing computational demands of businesses, scientists and governments, while increasing their efficiency and environmental sustainability. Next time society doesn’t crumble, that’s what I’ll be grateful for.
Not too hard to handle: some other uses of diamond
Diamond certainly is a material that is very hard to handle. But control it at the atomic level and you can actually mould it to some very sophisticated uses. You may, for example, be able to create the ultimate building block for the future quantum computer. Or you may be able to image individual molecules, down to their exact atomic layout. That is exactly what Mohamed Abobeih did. Read more about his scenic route towards fault-tolerant qubits here.
A balloon trip to the galaxy
Launching a balloon into space sounds impossible, and it is. But if your balloon is the size of a soccer stadium, you can bring a telescope all the way to the edge of space. At that altitude of 36 kilometers, far above the water vapour in the earth’s atmosphere, the telescope is free to observe the far-infrared radiation that tells the story of the birth and death of galaxies.
Still a useless mission, if it weren’t for three detectors developed by researchers from TU Delft and SRON (Space Research Organisation of the Netherlands). The launch date is December 2021, but you can already read about their intricate workings and the 20-year long road of painstaking development leading up to this all time high for infra-red space exploration.
Flooding Amsterdam with solar panels
Installing a million solar panels, like Amsterdam intends, sounds like a decent step towards ensuring a decent supply of energy. But it may actually jeopardise the reliability of the electrical grid, putting homes at risk. That’s why researchers from TU Delft are looking at the big picture, taking into account the underground low-voltage network as well as the need for green and blue roofs to save the people of Amsterdam from drowning and choking. Here you can read more about the urban puzzle of where to put a million solar panels.
Smart buildings for a smooth energy transition
New solar and wind farms pop up faster than trendy coffee bars. But the energy transition isn’t only about replacing fossil fuels with renewable energy sources. It is also about transitioning from centralised energy production in a few large power plants, towards distributed and two-way energy distribution. Our electrical grid, which is quite old, hasn’t been designed with two-way energy distribution in mind, let alone been optimised for it. Too much renewable energy may actually jeopardise the reliability of our electrical grid.
With a share of 30% in our national energy consumption, the built environment can play an important role in ensuring the energy transition to be a smooth one. Using smart energy solutions, buildings can help mitigate fluctuations in the supply of and demand for energy. With proper understanding of their exact energy need, whole campuses and neighbourhoods can even become self-sustaining, reducing . The best path towards a sustainable future hasn’t yet been laid out, but the NWO Perspectief programme on Smart Energy Solutions in the Build Environment helps in laying the ground work for a smooth transition.
Millimetre wave radar for improved road safety
It will still take some time for the fully autonomous car to arrive, and they may never be able to navigate Delft city centre where you have to deal with ten pedestrians and fifteen cyclists simultaneously. Not to mention a plethora of small bridges, frequent changes in traffic situations and the erratic non-law-abiding behaviour of said pedestrians and cyclists.
But the goal of millimetre wave radar is not to make this possible, but to improve road safety in general. The technology may require another step reduction in resolution (to see the motor cycle overtaking the oncoming truck), but it is a getting there fast. It will soon become compulsory technology, just like the seatbelt and the airbag. Read more about millimetre wave car rader here.